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The use of bent asymmetric Laue crystals to sagittally focus high-energy

synchrotron X-rays calls for an understanding of the mechanisms affecting

X-ray diffraction by such crystals. The rocking-curve width, a measurable

quantity directly related to the distortion of the lattice planes, is the necessary

®rst step towards such an understanding. A model is formulated for assessing the

rocking-curve widths of sagittally bent Laue crystals, considering the elastic

anisotropy. A method for depth-resolved measurement of the rocking curves

was also developed to verify the model. The model successfully explains the

wide range of rocking-curve widths of a large number of re¯ections from silicon

crystals with two different orientations.

1. Introduction

We recently showed that sagittally bent asymmetric Laue

crystals, diffracting in the vertical plane, can focus X-rays

horizontally (Zhong et al., 2001a,b). Their use is preferable to

that of Bragg crystals at higher X-ray energies owing to the

much reduced footprint of the beam. Moreover, Laue crystals

allow us to take advantage of anticlastic bending to realize the

inverse-Cauchois geometry in the meridional plane, resulting

in better energy resolution than achievable with traditional

sagittal focusing by Bragg crystals. Modes of implementing

sagittally bent Laue crystals in single- and double-crystal

horizontally focusing monochromators, suitable for high-

energy synchrotron X-rays, were suggested and have been

veri®ed experimentally.

Experiments showed that, in addition to the gain in inten-

sity due to focusing, sagittally bent Laue crystals increased the

¯ux of the focused X-ray beam by about an order of magni-

tude over that of perfect crystals (Zhong et al., 2001b). This

effect is mainly due to a signi®cant increase in the width of the

rocking curve, a result of lattice distortion introduced by

sagittal bending. The extent of this increase depended on the

crystal's orientation and the asymmetry angle of the re¯ection

used. Thus, it is important to understand quantitatively how

sagittal bending leads to the broadening of the rocking curve,

so that we can simulate diffraction properties, such as angular/

energy acceptance and re¯ectivity, to aid in designing mono-

chromators.

Meridionally bent crystals (crystals bent in the diffraction

plane) have been used previously to meridionally focus X-rays

and neutrons. A lamellar model has been used successfully in

both the Bragg and Laue geometries to explain X-ray and

neutron diffraction by such crystals (Egert & Dachs, 1970;

Albertini et al., 1976; Boeuf et al., 1978; Mikula et al., 1984).

According to the model, the rocking-curve width of a Laue

crystal, a measurable quantity, corresponds directly to the

change in Bragg angle and rotation of lamellae across its

depth. Theories have been derived for the angular acceptance

of meridionally bent isotropic crystals (Caciuffo et al., 1987;

Popovici et al., 1988; Erola et al., 1990; Hiraoka et al., 2001).

Similar treatments were worked out for meridionally bent

anisotropic crystals (Kalman & Weissmann, 1983; Schulze et

al., 1998). Although the isotropic model is adequate for most

applications of meridionally bent crystals, elastic anisotropy

was found to play a role in explaining the observed rocking-

curve widths in some special cases (Hartlaub, 1996).

In meridionally bent crystals, the bending plane is the same

as the plane of diffraction, and bending directly in¯uences the

change of lattice spacing and the tilting of lattice planes

(Lienert et al., 1998). On the other hand, sagittal bending

affects the diffraction process occurring perpendicular to the

plane of bending, but in a less direct way. Our earlier attempt

to adapt a model for meridionally bent crystals to sagittally

bent ones, by simply considering anticlastic bending (Zhong et

al., 2001b), was unsatisfactory. Sagittal bending typically is an

order of magnitude more severe than meridional bending, and

introduces signi®cant extra modi®cations to the lattice spacing

and tilting of the lamellae than are accounted for by anticlastic

bending alone.

In this work, an analytical model for the rocking-curve

width of X-ray diffraction by sagittally bent Laue crystals is

derived from ®rst principles, taking into consideration the

elastic anisotropy of the crystals. The calculated angular-

acceptance widths, including their signs, for ten different

re¯ections on sagittally bent crystals of two representative

orientations, were veri®ed experimentally by a depth-resolved

rocking-curve measurement speci®cally designed for this

purpose.² Present address: SSRL, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
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2. Rocking-curve width

Fig. 1 depicts a sagittally bent crystal diffracting in the Laue

mode to illustrate the crystal's orientation, the direction of

bending, and the diffraction planes in the coordinate system.

The planar crystal, depicted in the yz plane, is sagittally bent

around the y axis; and the resulting anticlastic bending is

around the z axis. The diffraction vector H lies in the

diffraction plane which coincides with the xy plane.

The coupling between the bending in the sagittal plane and

the lattice distortion in the diffraction plane is orientation

dependent. Thus, it is necessary to take into consideration the

anisotropy of the crystal. From results obtained for plates of

constant cross section bent by equal but opposite moments,

the displacement ®eld is (Voigt, 1928; Kalman & Weissmann,

1983; Chukhovskii et al., 1994)

ux � E�x2S13 ÿ y2S23 ÿ zyS43 ÿ z2S33�
uy � E�x2S63 � 2xyS23 � xzS43� �1�
uz � E�x2S53 � xyS43 � 2xzS33�;

where Sij are the elastic compliances of the crystal for a

speci®c orientation, ux;y;z are displacements in the x, y and z

directions, respectively, and E is a constant related to the

bending moment and moment of inertia of the crystal. E is

positive for bending as shown in Fig. 1.

Equation (1) assumes the crystal to be a free-standing one.

However, actual crystals used for experiments are typically

constrained by bending devices. The ratio between the meri-

dional- and sagittal-bending radii then is modi®ed by a factor

C through Rm � Rs=�CS023�, where S023 � S23=S33 is the Poisson

ratio of the crystal, and C is a constant that accounts for the

shape of, and the constraints on, the crystal (Krisch et al., 1991;

Quintana et al., 1995; Suortti & Schulze, 1995; Yoneda et al.,

2001). Without elaborating on the details of the elastic

deformation of the crystal under complex boundary condi-

tions, the S23 in (1) is simply replaced by CS23 to account for

these effects. Equation (1) then becomes

ux � E�x2S13 ÿ y2CS23 ÿ zyS43 ÿ z2S33�
uy � E�x2S63 � 2xyCS23 � xzS43� �2�
uz � E�x2S53 � xyS43 � 2xzS33�:

The sagittal bending radius is Rs � ÿ1=�2S33E�; Rs is negative

for the situation shown in Fig. 1. In the diffraction plane, the

anticlastic bending radius is Rm � ÿ1=�2CS23E�.
For diffraction occurring in the xy plane, the bent crystal is

approximated by a stack of perfect lamellae with a gradually

changing orientation and lattice spacing. The angle the crystal

needs to rotate to obtain the Bragg condition for the lamellar

at depth T is

���T� � ÿ��rot�T� ���B�T�; �3�
where ��rot�T� is the change in the angle between the lattice

planes and the incident X-rays, at depth T along the incident

beam's path, with respect to the angle at the point where the

beam enters the crystal (T � 0). ��B�T� is the corresponding

change in the Bragg angle. T is de®ned to increase along the

beam's trajectory.

The change in the lattice orientation, ��rot�T�, is calculated

by following the rotation of a segment of the lattice plane, of

small length l, in the diffraction plane. Inset A in Fig. 1 shows a

small segment, �dx; dy; dz� before bending (solid vector) and

afterwards (dashed vector). The displacement of the segment,

�dux; duy; duz�, can be calculated by

dux;y;z �
@ux;y;z

@x
dx� @ux;y;z

@y
dy� @ux;y;z

@z
dz: �4�

According to the coordinate system de®ned in Fig. 1,

dx � ÿl cos�, dy � l sin� and dz � 0, where � is the asym-

metry angle for the Laue re¯ection, de®ned as the angle

between the lattice planes and the crystal's surface normal.

For the present discussion, � is positive if the diffraction

vector H is in the ®rst and third quadrants, as is the case for

both the upper- and lower-case re¯ections shown in Fig. 1. � is

negative for diffraction vectors that are in the second and

fourth quadrants.

The change in the angle between the lattice planes and the

incident beam, d�rot�x; y; 0�, from the neutral angle before

bending, at a position �x; y; 0� in the crystal, is represented by

the small angular change of the segment in the plane of

diffraction,

d�rot�x; y; 0� � ��dux sin�� duy cos��=l: �5�
The upper sign is used when the diffraction vector is in the ®rst

and second quadrants (H � y> 0), shown by the solid H vector

in Fig. 1. The lower sign is used when H is in the third and

fourth quadrants (H � y< 0), represented by the dashed H. duz

does not affect �rot because only displacement in the diffrac-

tion plane causes lattice rotation in this plane.

Figure 1
A sagittally bent crystal, diffracting in the the Laue mode. Inset A shows
the mechanism for lattice rotation. Inset B shows the mechanism for
d-spacing change.



Using (2), (4) and (5), we have

d�rot�x; y; 0� � � �1=Rs��x�S013 ÿ CS023� sin� cos�� yCS023

� �z=2�S043 � xS063 cos2 ��; �6�
where S0ij � Sij=S33.

We note that the bent crystal's angular acceptance is not

affected by the absolute lattice rotation itself but by the

relative change of this rotation along the beam's path. If we

assume that the incident X-rays meet the crystal's surface at

�0; 0; 0�, then a point �x; y; 0� along the path is related to its

depth, T, in the crystal by

x � ÿT

y � T tan��� �B�; �7�
where �B is the Bragg angle for the re¯ection. Along the

incident beam's path, the change in lattice rotation, ��rot�T�,
at depth T in the crystal, relative to that at T � 0, is calculated

using (6) and (7),

��rot�T� � d�rot�x; y; 0� ÿ d�rot�0; 0; 0�
� � �T=Rs���S013 ÿ CS023� sin� cos�

ÿ CS023 tan��� �B� � S063 cos2 ��: �8�
The ��B�T� term in (3) is caused by the difference in

expansion or compression of the lattice's d spacing at different

depths. Inset B in Fig. 1 shows a small segment �dx; dy; dz�,
aligned parallel to the diffraction vector, before bending (solid

vector) and afterwards (dashed vector). According to the

®gure, dx � l sin�, dy � l cos� and dz � 0.

The length change in the segment, dl, resulting from

bending, is

dl�x; y; 0� � dux sin�� duy cos�; �9�

where dux;y can be calculated using (4).

The change of Bragg angle at �x; y; 0�, owing to the change

in lattice spacing at that position, then is calculated using (4)

and (9),

d�B�x; y; 0� � ÿ �dl�x; y; 0�=l� tan �B

� �1=Rs�x tan �B�S13 sin2 �� S63 sin� cos�

� CS23 cos2 ��: �10�
Equations (10) and (7) give the relative change in Bragg angle,

��B�T�, along the beam's trajectory,

��B�T� � d�B�x; y; 0� ÿ d�B�0; 0; 0�
� ÿ �T=Rs� tan �B�S013 sin2 �� CS023 cos2 �

� S063 sin� cos��: �11�

As expected, �l=l, an intrinsic property of the crystal, does not

depend on the re¯ection used. The resulting change in Bragg

angle thus is the same for both the upper and lower cases, and

is only related to the Bragg angle through the term tan �B.

From (3), (8), and (11), the angle the crystal needs to rotate to

®nd the Bragg condition for a lamella at depth T is

���T� � �T=Rs�f���S013 ÿ CS023� sin� cos�ÿ CS023 tan��� �B�
� S063 cos2 �� ÿ tan �B�S013 sin2 �� CS023 cos2 �

� S063 sin� cos��g: �12�
From (12), the rocking-curve width measured with a parallel

pencil beam is approximately

! � ���2�T0� � !2
a�1=2; �13�

where T0 is the thickness of the crystal and !a is the Darwin

width of the re¯ection used.

3. Interpretation of the model

For symmetrical Laue re¯ections, the asymmetry angle is 0,

and (12) reduces to

���T� � ��T=Rs�S063: �14�
In this case, if the sagittal bending axis is perpendicular to a

mirror plane, S063 � 0, then the expansion of the rocking-curve

width due to bending is zero. The crystal's rocking-curve width

is then close to the Darwin width of the re¯ection. This is

desirable if high energy resolution is needed, although, as

demonstrated earlier, symmetrical Laue crystals do not focus

X-rays sagittally.

How various effects contribute to the overall rocking-curve

width is expressed through (8), (11), and (12). The second

term in (12) [same as in (11)], owing to the change in lattice d

spacing, is approximately a factor of tan �B smaller than the

contributions of the lattice rotation. Typical sagittally bent

Laue monochromators for high-energy X-rays utilize large

asymmetry angles for the necessary focusing (focal length is

inversely proportional to sin�), and low-index re¯ections for

optimum re¯ectivity. The Bragg angle for these re¯ections

typically is a few degrees. Thus, the lattice-tilt term [equation

(8)] is the dominant part of the rocking-curve width.

In (8), �S013 ÿ CS023� sin� cos� represents the tilting of the

lattice planes through the crystal's depth owing to sagittal

bending (S013 sin� cos� term) and anticlastic bending

(CS023 sin� cos� term). The term CS023 tan��� �B� can be best

understood as the effect of an incident X-ray traveling through

the crystal at an angle �� �B to the crystal's normal, and

seeing the lattice plane at different angles, owing to the

anticlastic bending in the plane of diffraction. The term

S063 cos2 � corresponds to the bowing of the lattice planes in the

plane of diffraction, caused by the lack of mirror symmetry

across the sagittal-bending plane. Except for the S013 sin� cos�
term, which is due to sagittal bending, the other effects also

are present in similar forms for meridionally bent Laue crys-

tals (Erola et al., 1990).

Based on this understanding, and ignoring the effect of the

d-spacing change at small �B, the contribution of the anticlastic

bending alone to the rocking-curve width can be estimated as

��m � ��T0=Rs�CS023�sin� cos�� tan��� �B�� �15�
and the contribution of the sagittal bending alone is

��s � ��T0=Rs�S013 sin� cos�: �16�
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Although sagittal bending is perpendicular to the diffraction

plane, the magnitude of its contribution is comparable to that

of anticlastic bending. Most interestingly, the two contribu-

tions are of opposite sign. Thus, depending on elastic

compliances, the two competing factors could cancel out each

other, even at large asymmetry angles, thus raising the possi-

bility for obtaining high energy resolution in sagittal-focusing

monochromators.

For example, (12) predicts opposite signs in the �� versus T

coef®cients between the 111 re¯ection in the (100) crystal, and

the 3�11 re¯ection in the (111) crystal (details are discussed

later). This is due to the different orientations resulting in S013

and S023 being disparate between the two crystals. The two

re¯ections have similar Bragg angles and asymmetry angles. If

they were meridionally bent, the lattice rotations across the

depths of the crystals would have the same trend. The

predicted sign change between the two crystals struck us as

being counterintuitive, warranting careful experimental veri-

®cation. Thus, we speci®cally designed a depth-resolved

rocking-curve measurement to verify this interesting obser-

vation.

4. Depth-resolved rocking-curve measurements

Equation (12) gives the angle by which the crystal needs to

rotate to ®nd the Bragg condition for a lamella at a given

depth T. The range of angle change from the front to the back

surface of the crystal typically is of the order of 10 to 100 mrad,

and can be easily determined by a rocking-curve measure-

ment. Such measurements generally provide only the magni-

tude of ���T0� in (12) but not the sign. By using low-energy

X-rays where absorption is not negligible, thereby causing a

measurable difference in intensity between beams diffracted

by the front and back of the crystal, sometimes the sign can be

determined, especially for re¯ections with large asymmetry

angles (there is no path-length difference for a symmetrical

Laue re¯ection). Sagittally bent crystals are the most relevant

ones for high-energy X-ray monochromators. Thus, to reliably

verify (12), an experimental method is needed that is applic-

able for all asymmetry angles at high X-ray energies. This can

be achieved by measuring the rocking curves of the crystal

with a ®ne slit in the diffracted beam, to de®ne a small region

inside the crystal where the diffraction occurs.

Experiments were performed at the X15A beamline of the

National Synchrotron Light Source (NSLS), Brookhaven

National Laboratory, New York. Fig. 2 shows a schematic of

the set-up for the depth-resolved rocking-curve measure-

ments. A monochromatic 18 keV X-ray pencil beam,

0.025 mm high and 0.5 mm wide, was prepared using a silicon

333 perfect-crystal monochromator. It was incident in the

middle of a sagittally bent Laue crystal. The crystal's tilt angle

was adjusted by a two-circle diffractometer. The incident

beam's intensity was monitored by an ion chamber while that

of the diffracted beam was measured by a scintillation detector

on the 2� arm of the diffractometer. Unlike a conventional

rocking-curve set-up, which has a wide-open detector, a

horizontal slit, 25 mm in vertical width, was positioned in front

of the detector on the 2� arm, at 100 mm from the crystal.

Conventional rocking curves were then measured with the

detector slit removed, by positioning the 2� arm at the

appropriate 2� value for the re¯ection being measured, and

rotating the crystal around �ÿ �B while measuring the

intensity of the diffracted X-rays at each angle. Then, with the

crystal at the center of the rocking curve, the detector slit

was installed and scanned vertically, perpendicular to the

diffracted beam, to ®nd the center position where the

maximum intensity occurred. Rocking curves, corresponding

to the lattice at different depths in the crystal, were subse-

quently measured with the detector slit at various positions, h,

around this center. There is a linear relationship between h

and the depth in the crystal, T, where the diffraction occurred.

The changes in Bragg angle, ��B�T� [calculated using (11)],

due to the change of d spacing across the depth of the crystal

typically is smaller by a factor of 10 than the rotation of the

lattice planes, and is on the order of a few tens of mrad for the

crystals tested. Thus, if the distance between the detector's slit

and the crystal is small enough (100 mm in the current case),

then the diffracted X-rays can be approximated as being

parallel within the depth resolution desired (on the order of

100 mm). With this assumption, for a rocking curve measured

with the detector slit at h, the depth, T, of the lattice planes

giving rise to that rocking curve is given by

T � ÿ h cos��ÿ �B�
sin 2�B

: �17�

In addition to being able to resolve the sign in (12), the

measurement of the depth-resolved rocking curve directly

determines ���T�, independent of the details of X-ray

diffraction from each lamella. In contrast to this, the measured

rocking-curve width is affected by the Darwin width of the

re¯ection through the dynamical diffraction, and is convoluted

with the size/energy/angular distribution of the probe beam.

Thus, the calculated value of ���T0� will approximate the

measured width of the rocking curve only if it is much larger

than the characteristic width of these effects.
Figure 2
Experimental set-up for measuring the depth-resolved rocking curves.



5. Crystals and reflections tested

Perfect silicon crystals, having strong elastic anisotropy and

being widely used in monochromators, are the natural choice

for testing the model. Depth-resolved rocking curves were

measured using different re¯ections from a sagittally bent

silicon (100) crystal (surface perpendicular to the [100] crys-

tallographic direction) and a (111) crystal (surface perpendi-

cular to the [111] direction), so comparisons can be made with

the predictions of the model. The orientations of the crystals

with respect to the sagittal bending are shown in Figs. 3(a) and

3(b), for the (100) and (111) crystals, respectively.

The (100) crystal, 0.67 mm thick, was cut from an 8 in-

diameter silicon wafer into a square 40 mm high by 100 mm

wide, with the short and long sides parallel to the [011] and

�0�11� directions, respectively. Its center active area of 40 mm

high by 57 mm wide was bent to a sagittal radius of 760 mm,

using a four-bar bender. We previously described the method

used for obtaining and verifying a uniform bending, especially

around the center of the crystal (Zhong et al., 2001b). The

sagittal bending axis was along the [011] direction. The

resulting meridional bending radius was 18.8 m, determined

by measuring the shift in centroid of rocking curves at

different positions on the crystal.

Fig. 3(a) also shows the accessible low-index re¯ections in

the �0�11� zone of this crystal. The 333, 111, 133 (� is positive

for these re¯ections) and their symmetry-related re¯ections

(with � being negative), such as �333, were measured in this

crystal. The symmetrical 022 re¯ection was also measured.

The size and thickness of the (111) crystal was the same as

the (001) crystal. It was cut from a 6 in silicon wafer with its

short and long edges parallel to the �1�10� and �11�2� directions,

respectively. This crystal was sagittally bent along the �1�10�
direction, to a sagittal radius of 760 mm, corresponding

approximately to an anticlastic bending radius of 3.9 m. The

difference in the anticlastic bending radii between the two

crystals is due to the difference in the orientations of the

crystals, resulting in drastically different Poisson ratios. Fig.

3(b) shows the accessible �11�2� zone re¯ections, of which the

3�11, 5�31 and 1�3�1 re¯ections were measured.

For each re¯ection, rocking curves were measured with

the detector slit at 41 different positions covering a range of

approximately 1 mm. The vertical height of the diffracted

beam, T0 sin 2�B= cos��ÿ �B�, was about 0.1 to 0.4 mm,

depending on the re¯ection. When the slit was in a position

outside the range of the diffracted beam, the detector

recorded no signal at all crystal angles, since the diffracted

beam did not reach the detector, even though the crystal might

be diffracting at certain tilt angles.

6. Experimental results

As an example, Fig. 4 shows the rocking curves of the 111

re¯ection in the (100) crystal, measured with the detector slit

at positions from ÿ0:125 to 0 mm with a 0.025 mm spacing in

between, corresponding to a probed depth, T, of 0.5 to 0 mm,

every 0.1 mm. Also shown in Fig. 4 is the rocking curve of

the same crystal, taken with the detector slit removed. The

rocking curve is roughly rectangular, typical of bent Laue

crystals diffracting at high X-ray energies. The rounded edges

of the rocking curves are mostly due to the vertical divergence

(about 5 mrad) of the incident beam, as a result of a non-zero

incident slit height and the vertical size of the synchrotron

X-ray source. The rocking curves have a depth sensitivity

smaller than 10 mm. The peak re¯ectivity of each depth-

resolved rocking curve corresponds approximately to the

re¯ectivity of the rocking curve by the whole crystal. This, and

the progression of the rocking-curve position with the probed

depth, suggest that the behavior of the bent crystal is consis-

tent with lamellar model, with its lattice planes at different

depths diffracting at different tilt angles.

For each depth-resolved rocking curve, the depth in the

crystal where the diffraction occurred was calculated using

(17). The centroid of the curve was calculated using the

average of the FWHM positions on the curve. The centroids
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Figure 3
Real- and reciprocal-space con®gurations for two crystals of different
orientations used for depth-resolved rocking-curve measurements. (a) A
(100) crystal, sagittally bent along the [011] direction, and diffracting in
the �0�11� zone. (b) A (111) crystal bent along the �1�10� direction and
diffracting in the ��1�12� zone.

Figure 4
Depth-resolved measurements on the 111 re¯ection in the (100) crystal.
The broken lines show rocking curves measured with the detector slit at
various positions. The solid line shows the rocking curve taken after
removing the slit in front of the detector.
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then were subtracted by the centroid of the rocking curve

corresponding to T � 0, for the measured re¯ections on the

(100) and (111) crystals, respectively. Since the smaller Bragg

angles of the low-index re¯ections lead to a larger change of

depth for the same step in the detector slit, there are less data

points for the low-index re¯ections than for the high-index

ones. As seen in Figs. 5 and 6, for each re¯ection, the rela-

tionship between the rocking-curve position and the depth in

the crystal is approximately linear, as predicted by (12). The

slope of the curves, both in magnitude and sign, are sensitive

to the asymmetry angle and the orientation of the crystal.

The theoretical relationship between the rocking-curve

centroid and the depth can be derived using (12). Since the

sagittal bending is on the positive side of the x axis, the sagittal

radius, Rs, is positive for both crystals. All re¯ections

measured correspond to the upper-sign case, with � being

positive for the re¯ections in the ®rst quadrant and negative

for re¯ections in the second quadrant.

The parameters of elastic compliances for the bent crystals

were obtained by a transformation of the stress±strain tensor

of the principal compliances for silicon (Wortman & Evans,

1965). The S063 is zero for both crystals owing to the high

symmetry of the crystal's orientation. Values for CS023 were

obtained using CS023 � Rs=Rm; they are ÿ0.040 and ÿ0.19,

respectively, for the (100) and (111) crystals. The factor C,

which summarizes the effects of the boundary conditions on

the crystal, is typically 0.2±1 depending on the crystal shape

and the bending mechanism. With the theoretical S023 and the

measured CS023, the C values are 0.66 and 0.72 for the (100)

and (111) crystals, respectively. Similar C values were

observed for the two crystals because they have the same size

and thickness, and were bent with similar benders.

Using these parameters, the rocking-curve positions as a

function of depth in the crystal were calculated for all the

re¯ections, using (12). The results are plotted as lines in Fig. 5

for re¯ections in the (100) crystal, and in Fig. 6 for re¯ections

in the (111) crystal. The trends and absolute magnitude of the

experimental values agree with the theoretical ones within

about 20 mrad.

Table 1 gives details of the parameters used and the results

for all measured re¯ections. ���T0� across the crystal thick-

ness of 0.67 mm was calculated using (12). The contribution of

Figure 5
Centroids of the depth-resolved rocking curves versus the depths in the
crystal where they were measured. Results are shown of the 333, 111, 133,
�333, �111, �133 and 022 re¯ections on the (100) crystal. The lines show the
theoretical results.

Figure 6
Results obtained for the 3�11, 1�3�1 and 5�31 re¯ections on the (111) crystal,
showing the centroids of the depth-resolved rocking curves versus the
depth in the crystal. The lines show the theoretical relationship.

Table 1
Parameters used, and results obtained, for different re¯ections on (100) and (111) crystals.

Crystal (100) (111)
S013 ÿ0.36 ÿ0.16
S023 ÿ0.061 ÿ0.26
S063 0 0
CS023, meas. ÿ0.040 ÿ0.19

Re¯ection 111 �111 333 �333 133 �133 022 3�11 1�3�1 5�31
� (�) 35.3 ÿ35.3 35.3 ÿ35.3 13.3 ÿ13.3 0 31.5 ÿ31.5 17.0
�B (�) 6.3 6.3 19.2 19.2 16.0 16.0 10.3 12.1 12.1 22.0
��B�T0� (mrad) 14 14 45 45 14 14 6.4 35 35 69
��rot�T0� (mrad) 114 ÿ102 124 ÿ84 65 ÿ44 6.4 ÿ73 177 6.8
���T0� (mrad) ÿ100 117 ÿ78 130 ÿ51 58 0 109 ÿ142 62
!, theo. (mrad) 101 118 78 130 51 62 10 109 142 62
FWHM, meas. (mrad) 96 119 76 124 55 63 23 112 138 72
��=T, theo. (mrad mmÿ1) ÿ149 174 ÿ116 194 ÿ76 87 0 163 ÿ2l2 93
��=T, meas. (mrad mmÿ1) ÿ175 177 ÿ137 186 ÿ95 80 ÿ19 169 ÿ244 76



d-spacing change [��B, calculated using (11)] and rotation of

the lattice planes [��rot, calculated using (8)] are shown, so

their relative magnitudes can be compared. The rocking-curve

widths, !, calculated using (13), are compared with the

FWHM of the measured rocking curves. Agreement between

them, except for the 220 re¯ection, is within 5 mrad.

The measured ��=T values were obtained by a linear least-

squares ®t to the experimental data shown in Figs. 5 and 6. The

signs of the theoretical ��=T agree with the measured ones,

and the absolute values agree within 20%. The discrepancies

are probably due to the assumption in (17) that the diffracted

X-rays are exactly parallel. Also, the small coef®cient, tan 2�B,

in (17) magni®es errors in h when calculating T. Despite these

known errors, the overall agreement between the model and

experiment is satisfactory, considering that no free parameters

were used for the theoretical calculations.

Comparing the solid lines and the associated experimental

points in Figs. 5 and 6 shows that there is, indeed, a change of

sign in the �� versus T relationship between the 111 re¯ection

in the (100) crystal and the 3�11 re¯ection in the (111) crystal.

This ®nding further demonstrates the uniqueness of sagittally

bent Laue crystals and the necessity of considering elastic

anisotropy for this class of crystals.

7. Concluding remarks

We have shown that sagittal bending typically broadens the

angular width of the X-ray diffraction by a Laue crystal. The

crystal's lattice orientation, anisotropic elastic properties and

asymmetry angle all play important roles in determining the

extent of this broadening. We developed an analytical model

for sagittally bent Laue crystals to explain the broad range of

X-ray rocking-curve widths measured using different re¯ec-

tions from crystals of different orientations. The model allows

insight into the complex coupling between sagittal and meri-

dional bending, the role of anisotropy, and their effects on

crystal diffraction. Silicon crystals of two representative high-

symmetry orientations were tested using a method of depth-

resolved rocking-curve measurement, speci®cally designed to

verify the model. The model reliably predicted the extent of

broadening of the measured rocking curves.

The discussion of the experimental results illustrates the

rich set of diffraction properties attainable by bent Laue

crystals. The measured variation from the front to the back of

each crystal covers a wide range between ÿ150 and 150 mrad,

suggesting the possibility of ®ne-tuning the diffraction prop-

erties by varying the asymmetry angle and crystal orientation.

The model allows these properties to be tailored by properly

designing the monochromator, most notably through crystal

orientation, to suit different experimental needs, which often

vary in the requirements on ¯ux (related to integrated

re¯ectivity) and resolution (related to anticlastic bending

radius and rocking-curve width).

We have only measured the combined effects of lattice

rotation and d-spacing change. By utilizing an analyzer crystal

after the detector slit, the lattice rotation and d-spacing change

effects can be separated.

Although the discussions have been carried out with

reference to X-ray diffraction, and the experimental veri®ca-

tion of the model was done using X-rays, the model should

apply equally well to neutrons with little modi®cation.

The depth-resolved rocking-curve measurements show that

one of the basic assumptions of the lamellar model, i.e. the

gradual change of the Bragg condition across the depth of the

crystal, is still valid for sagittally bent Laue crystals. Thus the

broadening of the rocking curve [equation (12)] obtained from

the model can be incorporated into the lamellar model to

predict the re¯ectivity of a sagittally bent crystal.
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